
Embedded Software lab,
RaspNet Protocol-defintion

Stefan Naumann

January 9, 2020

Contents
1 Preface 2

2 Basic structure 3
2.1 Layer 1 - Physical Layer . 3
2.2 Layer 2 - Data Link Layer . 4

2.2.1 Securing the transmission - CRC32 5
2.3 Layer 3 - Network Layer . 6
2.4 Layer 4 - Transport Layer . 8

3 API between ATMega and RPi 9

1

1 Preface
A protocol in computer communications is a set of rules for every participant of the
communication. It ensures, that data sent by the sender can be received and properly
computed on the receiving end.

The ISO/OSI layering model depicts several layers of protocols, which are needed to
pack and unpack the data within the internet-context. There are for example TCP, IP,
Ethernet or UDP. The separation of functionality into layers is important for better in-
teroperability between different implementations. It enables the developer to implement
one layer at a time and test smaller parts, rather than having to implement the whole
architecture at once.

User-applications, for example a web-browser, which encapsulated its data in HTTP,
are represented by the the top layer of the ISO/OSI-model. This data-stream will be
handed over to the TCP-layer, which adds some information needed for identifying the
package. It is also responsible for resending, if the package did not reach the receiver.
At the IP-layer the header with receiver- and sender-address is added and the package
is handed over to the data link layer. This one adds the physical MAC-address before
the physical layer sends the data as single bits over the wire.

Table 1: ISO/OSI-layering model (see [?])
Layer Function
7. Application High-level API, incl. Resource Sharing, remote file access,

directory service, virtual terminals
6. Presentation Translation between network service and application;

character encoding, data compression and en-/decryption
5. Session Managing session, i.e. exchange of information back-and-forth
4. Transport Reliable transmission of data segments between points in the

network; segmentation, acknowledgement, multiplexing
3. Network Structuring and managing a multi-node network; addressing,

routing, traffic control
2. Data Link Reliable transmission of data frames between two connected

nodes
1. Physical Sending and receiving raw bit streams over the physical medium

This document describes a simple communication protocol between Raspberry Pi com-
puters with the Gertboard-extension board, by using its ATMEL-processor for the com-
munication. The protocol uses a unidirectional logical token-ring infrastructure and it
uses four ports of the ATMEL-processor for communication.

The protocol clarifies the handling of addresses and basic reliability aspects. It also
implements a broadcast-mechanism. There is no concept of combining packages to a

2

bigger message, if needed the user has to implement that on top of the described stack.

2 Basic structure
RaspNet contains of several layers of protocols. Frames are send serialized over one wire.
The second wire is used as clock-signal. Therefore there are two wires used between two
subsequent nodes in the ring (see Figure 1), which can send up to 255 bytes (250 payload
+ 4 CRC + 1 size) per frame.

Raspberry Pi

ATMega

Raspberry Pi

ATMega

Raspberry Pi

ATMega

Raspberry Pi

ATMega

Figure 1: Architecture of the logical token ring network with four nodes

The following sections describe the layers of the protocol. The numbering of the layers
is oriented to the ISO/OSI-model.

2.1 Layer 1 - Physical Layer
The lowest layer describes how bits are sent over the wires. There are two wires used
from one node to the next. The first is used as data-pin, the second as clock-signal.
Whenever the clock-signal changes (from 1 to 0 or from 0 to 1) there is a new bit there
for reading on the data-pin. The data-signal may change in the middle of two clock-
changes, so there is a phase shift between data and clock-signal.

A HIGH-signal level on the data-pin identifies a logical 1, a LOW-signal level identifies
a logical 0 when reading the signal at the data-pin. The clock-signal needs to be toggled
even if there are no data-bits to send. In this case the data-signal needs to be pulled
towards a logical 0.

Figure 2 depicts the timing-behaviour for receivable data of ’01’ on time 2 and 4.

3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6

va
lu

e
(1

 H
IG

H
, -

1
LO

W
)

time

clk
data

Figure 2: Timing behaviour of layer 1

2.2 Layer 2 - Data Link Layer
Using the service of layer 1 to send bits, layer 2 bundles them together to send network-
frames. A network-frame begins with a preamble of ’01111110’ (a zero, six ones, a zero).
Whenever the receiver reads this pattern, when not reading the payload of another pack-
age, a new network frame begins.

Figure 3 shows the structure of the header for layer 2 (lengths are given in bit).

CRC3201111110 size

'payload'

0 32 40 max. 2048

Figure 3: Basic structure of the frame

The header-fields serve the following purposes:

1. CRC32 32 Bit. A 32 bit long CRC32-checksum over the payload only. Must be
checked when receiving a package, if it’s wrong the receiver discards the frame.

2. Size 8 Bit. Size of the payload-data in Byte (8 Bit).

Figure 4 shows an automaton with the different states of the layer 2 protocol. From
the starting-state (idle), there are two possibilities, either the layer 2-implementation
receives data from the RPi, then it will calculate the checksum and send the frame
(using layer 1), or it receives data from layer 1, i.e. from another node in the network.

4

Then it will read the header and size bytes of payload. It will calculate the CRC-value
of the payload and compare the calculated value with the previously read one. If they
match, the payload will be transferred to layer 4, if not it will discard the frame. Both
actions will lead to the idle-state.

Figure 4: Protocol automaton for a layer 2 implementation

2.2.1 Securing the transmission - CRC32

For securing the transmission a CRC32-procedure (Cyclic Redundancy Check) is used.
This algorithm is based on polynomial division with remainder. The polynomial for
CRC32 [?] [?] is

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1

This is transferred into the bit-representation: 1 0000 0100 1100 0001 0001 1101
1011 0111. This word is more than 32 bit long. The data-stream will be divided by
this generator-polynomial in a mod(2)-ring. The remainder will be your CRC32-value.

For checking the correct transmission one calculates the remainder of the received pack-
age and checks it with the received CRC32-value. If they match there is either no error
in transmission or there is a unlikely error, which cannot be found by the CRC32-method.

Calculating the remainder may be done like long division. Take the numerator (div-
idend) and add 32 bit as remainder to the bitstream. Put the denominator (divisor)
under it, with the first ’1’ of both numbers lining up. Do a bitwise-XOR-operation on

5

both numbers. If the numerator is larger than the denominator you only need to XOR
the present bits. Do this recursively until the bits in the original bitstream are all zero,
with only the added 32 bits having ones in them.

Given the payload 0x74 65 the following CRC8-calculation may be done. The generator
polynomial of CRC8 is: x8 + x5 + x4 + 1 (1 0011 0001). This calculation is based on
adding n (the degree of the polynomial) bits to the payload, which serve as remainder.
In the case of CRC8 we added 8 bits as remainder.

0x74 0x65
0111 0100 0110 0101

G 100 1100 01
011 1000 001

G 10 0110 001
01 1110 0000

G 1 0011 0001
0 1101 0001 0

G 1001 1000 1
0100 1001 11

G 100 1100 01
000 0101 1001 | 00

G 100 1100 | 01
001 0101 | 0100

G 1 0011 | 0001
0 0110 | 0101 00

G 100 | 1100 01
010 | 1001 010

G 10 | 0110 001
00 | 1111 0110

0xf6

Therefore CRC-8 remainder of the input data 0x74 65 is 0xf6.

A valid CRC-32 remainder for 0x74 65 73 74 is 0x0b 70 ed 28. Keep in mind, that
a CRC-value is always as long as the degree of the generator-polynomial (therefore in
CRC-32 32 bit).

2.3 Layer 3 - Network Layer
The third layer handles addressing and routing of packets. Based on the correct layer2-
network-frames layer 3 handles addressing, therefore ensuring, that packets are retrans-
mitted through the ring if the packet needs to reach other recipient(s) or handing the
packet to layer 4. Figure 5 shows the layout of the header of layer 3 (lengths are given
in Bytes).
The header-fields serve the following purposes:

6

destination source

payload

0 1 2

Figure 5: Basic structure of the layer3-packet

1. destination 1 Byte. The destination address of the package.

2. source 1 Byte. Source address of the package.

Addresses An address is a number between 1 and 255 (28 − 1). Every address has to
be unique in the network. The address zero (0x00) is used as broadcast-address. The
addresses are assigned statically at start-up of the system.

The following cases may occur during execution:

Whenever a layer 3 implementation receives a package, it checks the destination ad-
dress. If the address is equal to the address gotten during initialization, the packet will
be handed over to layer 4.

Reading the broadcast-address indicates that every node in the token ring needs to re-
ceive the package. There are no ACK-messages for broadcast packages. At the point,
where the sender receives its own package, it knows that every addressee has received the
message properly and notifies layer 4 of the successful sending operation. If the package
is lost or corrupted on the way through the ring, layer 4 needs to care about resending
or ignoring the fault. Every other node needs to relay the package through the ring.

Whenever the layer 3 implementation receives a message with its own address or the
broadcast-address set as source-address, it will discard the package.

Due to the organization of the header it may be possible to stream the packets through
the ATMegas without buffering them in whole. A CRC-check is not performed at the
intermediate-nodes between the sender and the receiver. The frame is received and
read until the destination-address. If the destination differs from the own address, the
ATMega can begin relaying the read Bytes to the next node, while still receiving the
remaining ones. An communication-error can be detected on the receivers end. This
behaviour is also possible for broadcast-message, but every node has to check the desti-
nation address. If the receiving node sent the broadcast message relaying must not be
done.

Priorities Packages that need to be relayed should be handled with a higher priority
than own sending-wishes of the node. Sending-wishes should be handled in order of their
arrival. This ensures, that own sending-wishes may not block the ring and congestions

7

should not occur. If the node has no time to prepare its own sending-wishes, it cannot
generate additional load onto the network. Also prioritizing packages from other nodes
helps them holding their time-constraints.

2.4 Layer 4 - Transport Layer
The layer 3-packets are used for transporting packages in layer 4. The package contains
an identification number and some flags. Figure 6 shows the layer 4 header (lengths are
given in Byte).

identification Flags

payload

0 1 2

Figure 6: Basic structure of the layer 4-header

The header-fields serve the following purposes:

1. identification 1 Byte. Identification number for that package.

2. flags 1 Byte. Flags for signalling.
a) 0x01 – ACK. Acknowledge. Indicates to the sender that the receiver got

the package.
b) 0x02 – DGRAM. Message is datagram. Do not acknowledge the message,

it will not be resend if lost or corrupted.
c) 0xfc. Reserved for future use.

Layer 4 provides the functionality to detect corrupt or lost messages via the means of
a time-out. It therefore can ensure, that a package is resend if needed. The acknowl-
edgement and resend-functionality can be disabled by setting the DGRAM-flag, so the
application can decide whether a resend is necessary.

Not trying to resend lost messages may be useful when the message is a snapshot of
a value, for example a sensor-value that is read in a cyclic manner. Not receiving a
value may be better than trying to resend an old value, which block the communication
channel for other sensors.

Identification The identification number will be increased with every sent message at
the senders side. Therefore after 256 sent messages identification numbers start to get
reused. The sender needs to save sent packages until an ACK-package was received if the
package is not a datagram. The receiver needs to save the identification-number of the
last received package for each sender, because it may be possible that a sender resends
its package due to an ACK-package taking to long to reach the sender. Layer 4 does

8

not guarantee, that a message is received only once, nor that it reaches its destination
at all.

Acknowledgement The ACK-package has a set ACK-Flag, the identification-number
of the original package and does not have a layer 4-payload. After sending a package,
a timer is started. If the sender receives an ACK-message within a specific amount of
time (set at startup), the message can be deleted off the ATMega; if not it will be resent.
The sending ATMega indicates an error to the sending Pi after five unsuccessful tries.

The amount of time for waiting after the last bit is transmitted will be received on
initialization from the Raspberry Pi. A good value might be:

tw = n · l1 · Wc(Layer1) · 2

with tw time for waiting; n number of nodes in the network; l1 the amount of latency
on the cable for the longest possible message and Wc(Layer1) the worst-case time for
layer 1 to send and receive the longest possible frame. It must be multiplied with two
to consider the latency of the ACK-messages and possible waiting time of the package
due to already begun transmissions on retransmission-side.

3 API between ATMega and RPi
For the communication between the ATMega processor and the Raspberry Pi we reuse
the layer 2-implementation and use a one-Byte big payload for transmitting data (char-
acters). This protocol therefore ensures correctness inside one byte but not whether a
communication partner has received a character nor if it received the correct order.

The protocol consists of several commands, indicated by a single character, followed by
its parameters. The ATMega may answer with Y or N. Due to the asynchronous nature of
communicating processors, transmissions may be interrupted by a communication-wish
by the other. Interrupting an ongoing transmission is not allowed. The ATMega may
drop any command it has received while sending a package to the Pi.

The following formal grammar describes the commands of the serial-protocol:
1 S = (' A ' ADDRESS | ' S ' | ' D ' LENGTH DATA | ' B ' ADDRESS | ' P ')
2 ADDRESS = NUMBER NUMBER NUMBER
3 LENGTH = NUMBER NUMBER NUMBER
4
5 NUMBER = ('0 ' | '1 ' | . . . | '9 ')
6 HEXNUMBER = (NUMBER | ' a ' | ' b ' | ' c ' | ' d ' | ' e ' | ' f ')
7 DATA = <payload−data>
8
9 −− h i n t : PRESCALER: the a l l owed v a l u e s g r e a t l y depend on the timer you use on ←↩

the ATMega, here : the 8− b i t t imers : t imer1 and timer3 .

9

The following commands are allowed:

• A Address - give the ATMega an address for itself

• S Status - ask the ATMega for its status (”OK” -> it’s okay to send another
package)

• D Data - transmit payload-data of the given length [0,255] to the ATMega.

• B Bind - specify the target address for the next package for sending.

• P Push - send the package (payload-data given the bound address)

On first initialization the ATMega receives an address from the Raspberry Pi. Then
messages can be transferred using the Bind, Data and then Push-commands. Every
command will be acknowledged or denied by the ATMega using Y or N characters.

The ATMega indicates a received message by R, followed by the address of the source-
node (as 3 digit string) size in bytes (as 3 digit string) and the payload:

1 S = ' R ' ADDRESS LENGTH DATA
2 −− r e s t as above

References
[1] Wikipedia. Cyclic redundancy check - wikipedia. URL:

https://en.wikipedia.org/wiki/Cyclic_redundancy_check. [date accessed: May
13, 2016].

[2] Wikipedia. Osi-modell - wikipedia. URL: https://en.wikipedia.org/wiki/OSI_model.
[date accessed: May 13, 2016].

[3] Wikipedia. Zyklische redundanzprüfung - wikipedia. URL:
https://de.wikipedia.org/wiki/Zyklische_Redundanzpr%C3%BCfung. [date
accessed: May 13, 2016].

10

