
A Reective Architecture for an Adaptable Object-Oriented OperatingSystem Based on C++Frank SchubertChemnitz University of TechnologyDepartment of Computer ScienceOperating Systems Group09107 ChemnitzGermanye-mail: fsc@informatik.tu-chemnitz.deMay 19971 IntroductionTodays operating systems have to support applications and hardware with highly specializedrequirements. Traditional all-purpose operating systems can't be an optimal runtime environ-ment for all the diverse applications. Therefore, instead of huge universal operating systemssmall tailored systems are needed to provide exactly the services and properties really requiredin a concrete situation.In the �eld of software development the object-oriented paradigm has been widely accepted aspowerful method to achieve adaptability. Hence, if the set of required properties remains thesame during the whole runtime of a system, object-oriented frameworks like PEACE [Schr�oder{Preikschat93], Choices [Russo91] or Tigger [Cahill94] are well suitable to manufacture tailoredoperating systems. However, once booted, such a system can not be adapted to changed require-ments (; static adaptability). If rebooting is not acceptable (due to the required availabilityor the e�ort for rebooting) a way for dealing with future requirements by dynamic modi�ca-tion of the running system is needed (; dynamic adaptability). Several commercial systems(Solaris, AIX, etc.) and a lot of research systems (Spin [Bershad95], Bridge [Lucco94], Apertos[Yokote93]) are already dynamically modi�able. Also some of the named frameworks have beenextended to support dynamic adaptation (e. g. PEACE [Schmidt95] and Choices [Madany92]).However, possible modi�cations are often highly restricted and complicated to perform. Eventhough a system has been structured in an object{oriented manner and implemented in anobject-oriented language, during runtime usually nothing of that structuring information is stillavailable. After compiling and linking the system, there is no knowledge about classes, classmembership, etc. Therefore, some operating systems are constructed as object managementsystems (e. g. BirliX [H�artig90] or Clouds [Dasgupta91]). They are able to manage objectsin various ways and to use objects as the basic components for service providing, adaptation,migration, etc. However, the resulting object structure di�ers considerably from the structuresused during software development (source-code level). Because of the often very heavy-weightobjects (private address space and own thread of control) no �ne{grained adaptation is possible.In the CHEOPS1 project we are applying an approach for a reective, object-oriented systemarchitecture, to support �ne-grained, dynamic adaptability. It is based on the idea to close the1CHEOPS { CHemnitz OPerating System 1

gap between models and abstractions used during development (design and implementation)and the identi�able entities in the running system (see also [CHEOPS96]). By retaining mostof the structuring information about classes, objects, and the relations between them it shouldbe possible to perform the same extensions and modi�cations as have been done to the system'sdescription (source code) within the running system itself.The second section of this paper presents our point of view to the underlying concepts: reec-tion and runtime representations of abstractions. After that, the class-object architecture ofCHEOPS is introduced. Section 4 gives a short impression about the implementation of thisarchitecture based on C++. Finally other related and future work is discussed.2 Reection and runtime representations of abstractionsA clear and well comprehensible system architecture forms the general basis for each modi�cationof a system. To perform the same steps of adaptation in the running system as have been doneat source-code level we need an open architecture that ful�lls the following requirements:� The identi�able objects in the running system have to be the same (in granularity andfunctionality) as at description level, modeled by means of an object-oriented programminglanguage.� Meta-level informations as{ available classes,{ class hierarchy (is-a relations),{ using-relations,{ correlation of objects to classes,{ and a�nity relations between objectshave to be still available in the running system.� Meta functionality as creation, destruction, storage and life-time management of objects aswell as object invocation mechanisms (all usually performed by the run-time environment)has to be opened up and assigned to identi�able entities in the system.The solution is based on the concepts of reection and run-time representations of abstractions.Reection has been introduced by Brian Smith [Smith82]. Later the ideas have been broadenedto the object-oriented world by Pattie Maes [Maes87]. The concept can be shortly outlined as theability of objects (so called base-level objects) to know about their run-time environment (alsocalled infrastructure or meta level) and to be able to make that environment to the matter ofcomputation itself. In this way objects are able to change their (meta-)properties by modifyingthe meta level. In an object-oriented system the meta level itself may be also composed byobjects.Although the most work in the �eld of reection has been done related to several programminglanguages (e. g. the meta-object protocol of CLOS [Kizcales93]) the Apertos-OS has shown thatthe concept is also suitable for an operating systems architecture [Lea95]. In our opinion the pre-condition for applying reection within a running system is the availability of identi�able system2

components as run-time representations of the meta-level abstractions used during development.According to that we propose to transform classes into the running system and to assign themall the tasks resultant from the requirements above.3 The Class-Object Architecture of CHEOPSDynamic adaptation in CHEOPS is done by adding or exchanging classes and objects duringthe system's runtime. Therefore, as explained above we need a representation of classes withinthe running system, the so called class objects. To distinguish the base-level objects from theclass objects the former are called regular objects (see Fig. 2). A class object is an identi�ableobject within the system. One class object exists for each description-level class in the system.The class object manages the objects belonging to its class. and is responsible for:� creation and destruction of objects,� object management (registering, localization),� service negotiation,� access control (e. g. by access control lists or capabilities),� supporting object exchange by using the knowledge about the class hierarchy (abstractclasses, polymorphism).According to our basic architecture, class objects are part of the infrastructure of regular objectsand therefore inuence their meta properties. To modify these meta properties we would haveto modify the class objects. For example, if object A invokes a service of object B, the realinvocation has to be performed by the infrastructure, precisely by the class object of objectB. Dependent on the class object, object invocation will be performed by a simple call, by aremote procedure call (RPC), or by sending a message, etc. To A and B this can be absolutelytransparent. The functionality for performing object invocation could be modi�ed, for instanceto add access control or parameter conversion, without any noti�cation to the communicatingobjects.Class objects are speci�c for each class. As each object is described by its class, for each classobject a class description, the class-object class (COC), exists as well (;meta-meta level). Basedon the class de�nition of regular objects, this class-object class is generated automatically (atsource code level) by the COC-generator.
COC-generatorclass

class’

class-object classFigure 1. The COC-generator The COC-generator creates a class-objectclass, which is able to deal with the basictasks of the class object. To extend orto change that functionality, the developercould specialize the class-object class byderivation.3

Class-objects can be added or removed to/from the system dynamically. Loading classes andcreating class objects is based on dynamic linking and supported by the so called class-objectmanager (COM).
regular
object

regular
object

regular
object

regular
object

regular
object

regular
object

regular
object

regular
object

class
object

class
object

class
object’

class-object
manager
(COM)Figure 2. The Class-Object ArchitectureThe COM exists right from the start within the system and is responsible for:� loading new classes (loading the class and the class-object class, creating the class object),� removing classes,� exchanging classes,� managing the class hierarchy.While adding a new class is a simple kind of extension (always possible), removing a class is onlyallowed, if currently no objects of that class exist. Exchanging classes can be used, for example,for correction of programming errors in an existing class. In this case the class object of the oldclass has to provide a service to determine and store the current state of all its objects. Thenew class object has to use these data to reconstruct all objects. This kind of services is notpart of the COC created by the current version of the COC-generator and have to be added byspecialization of the COC.Similar approaches have been already used in other systems, e. g. in SmallTalk [Goldberg83],where it is possible to create hierarchies of classes and meta classes. However, these systemsare working by source code interpretation and, consequently, are mostly too ine�cient to beused within an operating system's kernel. Therefore our approach is based on using a \compilerbased", object-oriented programming language.4 Realization Based on C++4.1 Language and RestrictionsThe realization of the shown approach is based on the C++ programming language. The decisionto use this language was inuenced, among others, by the following advantages:4

� C++ compilers and appropriate development tools (e. g. class browsers) are available fora lot of hardware platforms,� a lot of implementations in the �eld of system software and operating systems (e. g.Choices) have been done in C++ and show its suitability for constructing e�cient systems.Dynamic adaption in CHEOPS is based on adding, removing or exchanging classes and objects.If a new created object of a derived class has to substitute an old one, the new object generallycan't be stored at the same place, because of di�erent object sizes. Furthermore, objects have tobe able to migrate into other infrastructures to change their meta properties. Therefore, locationtransparency for all those objects is needed. To avoid direct access to objects and inuenced bythe idea to use the C++-calling mechanism for virtual methods to implement our alternativeobject invocation mechanism we have decided to make some restrictions to the used language:� no public data members are allowed,� all methods have to be virtual,� all objects are created dynamically,Furthermore, because of the resulting equivocations2 and their tricky implementation no multipleinheritance is allowed.4.2 ImplementationBasicsThe platform of our implementation is formed by the CHEOPS kernel. It is running stand-alone on Intel-based PC's (protected mode) and provides the basic functionality for memorymanagement, thread management and message passing. On that base the class-object managerruns as kernel thread. To be able to load and reload classes during runtime it contains a smallset of functions to support the dynamic linking process based on ELF's (Executable and LinkingFormat) position-independent code.The COC-generator was implemented by using yacc and lex. The current prototype parses notthe complete C++ syntax and expects syntactical correct code. As all the other necessary de-velopment tools it runs on top of Linux. By using an implemented communication mechanism(based on UDP) the COM is able to communicate with an special module-loader process totransfer compiled object modules into the CHEOPS kernel (see Fig 3). In this way developmentand �rst testing can be done on top of Linux3. After that, the object module is transfered tothe CHEOPS-kernel and the modi�cations are performed dynamically. One of the resultant ad-vantages is the very short turn-around time during the incremental kernel development, becausefrequent rebooting is not necessary.2caused by same member names within di�erent base classes3The �rst prototypes of COC-generator and also the class-object manager were running on top of Solaris andlater Linux. That testing environment is still used for testing new code.5

CHEOPS
Kernel

Application
Layer

Memory
Manager

Thread
Manager

Message
Passing

COM

CO 1 CO 2 CO n

regular objects

class objects
. . .

. . . applications

Linux kernel

COC-
generator

G++
. . .

Development Tools on top of Linux

UDP-based communication to transfer
object modules into the CHEOPS kernel

Module
Loader

Figure 3. Loading Object Modules into the CHEOPS kernelHowever, the system developer has to do several steps to add a new class to the system. Asusual the developer has to create a class de�nition and implementation at source code level.After that he can build the class-object class by using the COC-generator. This class can bespecialized by derivation as necessary. Finally the class-object manager loads the code of theclass and the generated class-object class into the system and instantiates the class object.All further tasks for managing objects of the loaded class have to be done by the new classobject. For the implementation of class objects we have modi�ed the mechanisms for objectidenti�cation and method invocation.Alternative Object Access resp. Method InvocationAll dynamically created C++ objects are referenced through the address of their data area[Stroustrup90]. Calls to virtual methods are performed indirectly via a virtual method table(VMT) referenced by a special component in the object's data area.To obtain location transparency for objects we have modi�ed this mechanism:� Because di�erent kinds of objects have to be handled di�erently (e. g. local or remoteobjects), potentially each object has to get its own VMT to meet the object's specialrequirements. Grouping of objects within the class to use the same VMT is possible.� Class-objects manage all necessary information about the objects of its class. The creationmechanism for objects was modi�ed in such a way, that it delivers not a pointer to anobject but a pointer to an object description entry managed by the class object. As the�rst component in each object description entry the pointer to the (modi�ed) VMT isstored so that the compiler generated method invocation is still working.Figure 4 demonstrates the resulting procedure of method invocation. In the current imple-mentation the COC-generator creates a class-object method corresponding to each method ofthe appropriate class. The new VMT refers to the class-object method instead to the object'smethod. Within that class-object method decisions can be made, how to proceed with theobject's method invocation. Using the object description entry, the class object can detect if6

the object exists locally or remotely, if the caller and the callee are related to the same or todi�erent threads, etc.
class object of class A
code

data

vmtbl1 object1, local, ...,
vmtbl2 object2, remote, ...,
vmtbl1 object3, local, ...,

.

+

vmtbl1:

vmtbl2:

.

.

.

.

.

.

call address
object 1; method B()
address offset

code (class A)
A():

B():

C():

data (heap)

object1

object 2

.

.

.

.

A’():

B’():

C’():

.

.

Figure 4. The Modi�ed Structure for Object InvocationA typical sequence of actions could be as follows:1. register object invocation, for logging objects state,2. check access permissions3. check object's location and object-activity relations,4. invoke method, either by a simple call or by an RPC,5. register end of method invocation,6. deliver output parameters.To change, extend or reduce these steps, the system developer has to specialize the automaticallygenerated class-object class and to tell the class-object manager to use this new class instead.For instance, in the current implementation only synchronous method invocation is supported,performed by a local call or an RPC. If it is necessary to modify this meta property of objects,the class object has to be modi�ed (changing infrastructure).A similar approach to achieve dynamic adaptability by modifying the management and theinvocation structure of C++ objects has been presented by the Object Binary Interface approach[Goldstein94]. However, in contrast to that work, our approach is based on using the availableC++ compilers without the necessity of compiler modi�cations.7

5 Related and Future WorkWhereas the projects PEACE and Tigger focus on building a framework for the development ofstatically tailored operating systems, Apertos, BirliX, or DAS [Goullon78], as we do, focus ondynamic adaptation. However, in contrast to those systems, we propose �ne-grained adaptation,based on retaining the �ne-grained structures which exist during software development withinthe running system. Furthermore, we are able to modify the infrastructure of regular objects,by modifying/exchanging the appropriate class objects.Research projects in the �eld of operating systems employing the notion of meta objects are, forinstance, Apertos, Tigger, AEON [Gowing95], and FlexMach(OMOS) [Orr92]. They are relatedto our project in the respect, that our class objects and the class-object manager are specialmeta objects. Further projects investigating new approaches to exible operating systems are,for example, Bridge [Lucco94], and Spin [Bershad95]. These projects mainly explore secureways to bring new code into the operating system kernel in order to adapt its behavior. Choicesprovides an loading mechanism to add new services to the running kernel based on run-timerepresentations of classes. In contrast to that work the CHEOPS class-object classes are speci�cto each class. In this way each class object can perform exactly the services needed for theappropriate class.During the next time some experiments with the implemented class objects have to be performed,in order to gain more experiences. The most suitable default COC functionality has still to bedetermined. This is necessary to prevent, that always specialized COC's have to be written. Tillnow, the whole prototype is located in a single address space and is running entirely in kernelmode. The support for application layer processes is still under construction. One further �eldof our investigations is the support of adaptation management by means of the class-objectarchitecture [Wohlrab97]. Beyond this, we plan to perform a series of e�ciency tests, in orderto determine where the overhead introduced by the class objects is too big to be compensatedby their advantages. The result of these tests will consist of guidelines, which components maybe implemented based on the class-object architecture and which parts have to be realized in atraditional manner.References[Bershad95] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker, S. Eggers, andC. Chambers: Extensibility, Safety, and Performance in the SPIN Operating System. Universityof Washington, Department of Computer Science and Engineering, Draft of March 30, 1995.[Cahill94] V. Cahill, C. Hogan, A. Judge, D. O'Grady, B. Tangney, and P. Taylor: Extensible Systems{ The Tigger Approach. Proc. of the SIGOPS European Workshop 1994, or:University of Dublin, Trinity College, Department of Computer Science, Distributed SystemsGroup: Technical Report TCD{CS{94.[Gowing95] B. Gowing and V. J. Cahil: Making Meta Object Protocols Practical for Operating Systems.IWOOOS '95, Workshop Proceedings, 1995.[CHEOPS96] S. Graupner, W. Kalfa, F. Schubert, R. Vogel, J. Werner, and L. Wohlrab: Dynamis-che Adaption in Betriebssystemen { Das Cheops Projekt. In: Winfried Kalfa (Ed.): CHEOPS:Betriebssystemforschung in Chemnitz. Chemnitzer Informatik{Berichte, Technische Universit�atChemnitz{Zwickau, Fakult�at f�ur Informatik, 1996.8

[Dasgupta91] P. Dasgupta, R. J. LeBlanc, M. Ahamad, U. Ramachandran: The Clouds DistributedOperating System. IEEE Computer, pp.34-44, Nov.1991.[Goldberg83] A. Goldberg and D. Robson: SmallTalk{80: The Language and its Implementation.Addison{Wesley, 1983.[Goldstein94] T. C. Goldstein and A. D. Sloane: The Object Binary Interface { C++ Objects for Evolv-able Shared Class Libraries. Technical Report SMLI TR{94{26, Sun Microsystems Laboratories,Inc., 1994.[Goullon78] H. Goullon, R. Isle, and K.{L. L�ohr: Dynamic Restructuring in an Experimental OperatingSystem. IEEE Transactions on Software Engineering, Vol. SE-4, No. 4, 1978.[H�artig90] H. H�artig, W. E. K�uhnhauser, W. Lux, W. Reck: Architecture of the BirliX OperatingSystem. GMD, St.Augustin, 6p., 1990.[Kiczales93] G. Kiczales et. al.: The Art of the Meta-Object Protocol. Cambridge: MIT Press, 1993.[Lea95] R. Lea, Y. Yokote, and J. Itoh: Adaptive operating system design using reection. Draft, to bepresented at HTOS 1995.[Lucco94] S. Lucco, R. Wahbe, and S. L. Graham: Adaptable Binary Programs. Carnegie Mellon Uni-versity, Technical Report CMU{CS{94{137, also Proc. of Winter USENIX 1994.[Maes87] P. Maes: Concepts and Experiments in Computational Reection. OOPSLA 87 conferenceproceedings, pp. 233-240, 1987.[Madany92] P. Madany, N. Islam, P. Kougiouris, and R. H. Champbell: Practical Examples of Rei�ca-tion and Reection in C++. International Workshop on Reection and Meta-Level Architectures,pp. 76-82, 1992.[Orr92] D. Orr and R. Mecklenburg: OMOS - An Object Server for Program Execution. IWOOOS '92,Workshop Proceedings, 1992.[Russo91] V. F. Russo: An Object-Oriented Operating System. PhD Thesis, University of Illinois, 154p.,1991.[Schmidt95] H. Schmidt: Dynamisch ver�anderbare Betriebssystemstrukturen. PhD Thesis, UniversityPotsdam, 1995.[Schr�oder{Preikschat93] W. Schr�oder{Preikschat: Design Principles of Parallel Operating Systems {A PEACE Case Study. Technical Report 93{020, ICSI Berkeley, 1993.[Smith82] Reection and Semantics in a Procedural Language. PhD Thesis, Massachusetts Institute ofTechnology, 1982.[Stroustrup90] B. Stroustrup, M. Ellis: The Annotated C++ Reference Manual.Addison-Wesley, 1990.[Wohlrab97] L. Wohlrab: Con�guration and Adaptation Management for Object-Oriented OperatingSystems. ECOOP 97 workshop "Object-Orientation and Operating Systems", Jyv�askyl�a, Finland,1997.[Yokote93] Y. Yokote: Kernel Structuring for Object{Oriented Operating Systems: The Apertos Ap-proach. Sony CSL, Technical Report SCSL{TR{93{014, 1993.9

